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Abstract. In this work, we study the problem of onset of thermal convection in a rotating saturated porous
medium heated from below. The effect of rotation is restricted to the Coriolis force, neglecting thus the
centrifugal effects, the porous medium is described by Brinkman’s model. The linear eigenvalue problem
is solved by means of a modified Galerkin method. The behavior of the critical temperature gradient is
discussed in terms of various parameters of the system for both stationary and overstable convections.
Finally a weakly nonlinear analysis is provided to derive amplitude equations and to study the onset of
Küppers-Lortz instability.

PACS. 47.20.Bp Buoyancy-driven instability – 44.25.+f Natural convection – 47.27.Te Convection and
heat transfer

1 Introduction

The study of fluid convection in a rotating porous medium
is not only a subject of fundamental importance but also
of practical interest; it is present in a large number of
applications, such as centrifugal filtration processes, food
engineering and geophysics. A good review of flow interac-
tion and heat transfer in porous media is found in [1] and a
detailed analysis of the effect of rotation in Vadasz [2]. The
influence of Coriolis effect on gravity-driven convection in
porous media was first investigated by Friedrichs [3] who
used the Brinkman model [4] to describe the linear stabil-
ity while Palm and Tyvand [5] employed a classical Darcy
model. Vadasz [6] based its analysis on an extended Darcy
model with a time-derivative term in the momentum equa-
tion allowing for overstability. He found that, in contrast
with the same problem in pure fluid [7], overstable con-
vection in rotating porous media is not restricted to a par-
ticular range of Prandtl numbers. By means of a weakly
nonlinear analysis, he also showed that rotation may have
a retarding effect on convective heat transfer.

Our first aim is to develop a linear stability analysis
of a rotating porous layer described by Brinkman’s model
and to detail the influence of several dimensionless param-
eters on the critical values. Second, a weakly nonlinear
regime based on a projection method is investigated and
amplitude equations are derived. These amplitude equa-
tions are used to study the onset of the Küppers-Lortz
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instability and to determine the angle as well as the cor-
responding Taylor number at which the Küppers-Lortz
instability first manifests itself when the angular velocity
is increased.

2 Mathematical formulation

We consider a homogeneous porous medium of thickness d
and infinite horizontal extent saturated by an incompress-
ible fluid. The system is heated from below in the gravity
field and is rotating with a uniform angular velocity Ω
around a vertical axis ez (Fig. 1). We take for granted the
Boussinesq approximation and assume that the saturating
fluid is Newtonian with density given by

ρ = ρ0 [1− αT (T − T0)] , (1)

where ρ0 is the density of the liquid at temperature T0

and αT the constant coefficient of volumic expansion.
Although Darcy’s law is widely used to describe porous

media, we prefer to select the Brinkman model that ac-
counts for friction caused by macroscopic shear. It is
known that this effect seriously affects the flow especially
in sparsely packed porous media. This amounts to consid-
ering the saturated porous matrix as a specific fluid with
an effective viscosity µe and subject to an additional ex-
ternal body force, namely, the Darcy force. For distances,
not too far from the axis of rotation, one can neglect the
centrifugal effects [8,9], hence limiting the effect of ro-
tation to the Coriolis force. In a reference frame linked
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Fig. 1. Geometrical configuration.

to the rotating porous matrix, the continuity, momentum
and energy equation read therefore as

∇ · u = 0, (2)

ρ0

φ

(
∂tu +

1
φ
u ·∇u + 2Ω × u

)
= −∇p + µe∇2u− µl

K
u

− ρ0g [1− αT (T − T0)] ez, (3)

∂tT +
(ρ0c)l

(ρ0c)p

(u ·∇T ) =
kp

(ρ0c)p

∇2T, (4)

wherein φ designates the porosity, K the permeability,
Ω the angular velocity, u = (u, v, w) the seepage velocity
(i.e. the average of the fluid velocity over a volume element
of the porous medium), p the pressure, T the temperature,
kp is the mean thermal conductivity in the porous layer.
For any physical property, one has ( )p = (1− φ) ( )s +
φ ( )l where subscript s denotes a property of the solid
matrix while subscript l refers to the liquid.

3 Linear stability analysis

3.1 Small perturbation equations and relevant
boundary conditions

To study the linear stability of the system, the analysis is
restricted to infinitesimally small perturbations. The gov-
erning equations are linearized with respect to the ref-
erence state, namely, a motionless fluid with a steady
temperature difference ∆T between the bottom and top
surfaces. For convenience, the variables are written in
dimensionless form and the following scaling units are
used: d for the length, ∆T for the temperature, d2/κp =
d2 (ρoc)l /kp for the time and κp/d for the velocity. After
some straightforward calculations, one obtains the follow-
ing dimensionless linearized equations for the perturbed
variables namely the vertical component of the velocity w,

the vertical component of the vorticity ζ (= (∇× u) · ez)
and the temperature T :

χ−1∂t∇2w = Ra ∇2
hT + Λ Da ∇4w

−∇2w −
√

Ta ∂zζ, (5)

χ−1∂tζ = Λ Da ∇2ζ − ζ +
√

Ta ∂zw, (6)
S−1∂tT = ∇2T + w, (7)

all the symbols refer to dimensionless perturbed quanti-
ties; we have kept for simplicity the same notation for the
perturbed and overall fields. Six dimensionless parameters
have been introduced in the above equations, namely

Ra = αT gρ0∆TdK
µlκp

, the porous Rayleigh number,

χ = µld
2φ

ρ0κpK , the filtration Prandtl number,

Da = K
d2 , the Darcy number,

Λ = µe

µl
, the dynamic viscosities ratio,

T a =
(

2Ωρ0K
µlφ

)2

, the porous Taylor number,

S = (ρc)l

(ρc)p
, the heat capacities ratio.

To solve the set (5–7), we need eight boundary conditions
which are given below.
At the lower wall (z = 0): The boundary is assumed rigid
and perfectly heat conducting, so that

w = 0, (8)
∂zw = 0, (9)

ζ = 0, (10)
T = 0. (11)

At the upper surface (z = 1): The upper wall is also con-
sidered to be rigid with

w = 0, (12)
∂zw = 0, (13)

ζ = 0, (14)

while heat transfer is assumed to be governed by Newton’s
cooling law

∂zT +
Bi

1− Bi
T = 0, (15)

wherein Bi = B
1+B is the modified Biot number running

from 0 (adiabatic wall) to 1 (perfectly heat conducting
wall) while B is the classical Biot number.

3.2 Normal mode decomposition

According to the normal mode technique, one seeks solu-
tions for the three unknown fields of the form


w

ζ

T


 =




W (z)
Z (z)
Θ (z)


 exp [i (axx + ayy) + st] (16)
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where the amplitudes W (z), Z (z) and Θ (z) describe the
unknown variation with respect to z of the vertical veloc-
ity, the vertical vorticity and the temperature respectively,
ax and ay are the dimensionless wave numbers in the x and
y directions respectively, finally, s is the complex growth
rate of the disturbances.

Introducing expression (16) in equations (5–7) leads to

χ−1φ−1s
(
D2 − a2

)
W = Λ Da

(
D2 − a2

)2
W

− (
D2 − a2

)
W − a2Ra Θ

−
√

Ta DZ, (17)
χ−1φ−1sZ = Λ Da

(
D2 − a2

)
Z − Z

+
√

Ta DW, (18)
S−1sT =

(
D2 − a2

)
Θ + W, (19)

where D stands for d/dz and a =
√

a2
x + a2

y is an overall
horizontal wave number. The above three equations give
rise two a 8th order system with the following associated
boundary conditions. At z = 0, one has

W = 0, (20)
DW = 0, (21)

Z = 0, (22)
Θ = 0. (23)

At z = 1:

W = 0, (24)
DW = 0, (25)

Z = 0, (26)

DΘ +
Bi

1− Bi
Θ = 0. (27)

The parameters χ and S are still present in the
set (17–19) because oscillatory convection is allowed; the
principle of exchange of stability is not supposed to hold,
i.e. s is not set equal to zero at marginal stability. It is
worth noting that for each value of the horizontal wave
number a (which can take all directions and moduli in the
case of a system of infinite horizontal extent) the linear
eigenproblem (17–19) admits an infinite set of eigenvalues
that will be distinguished by means of the subscript q in
our nonlinear analysis, with corresponding vertical eigen-
functions Wq (z), Zq (z) and θq (z) for the vertical veloc-
ity, vertical vorticity and temperature perturbations. The
maximum value of the growth rate is zero and corresponds
to a wave number equal to the critical value ac. The in-
dex q runs from 1 to infinity and the negative growth rates
are assumed to be ordered in such a way that the real
part of the growth rate sq decreases with q (for a = ac,
one has s1 = 0). The eigenmodes are normalized in such
a way that the maximum value of the modulus of θq(z)is
equal to 1. The linear eigenproblem is solved by means of
a modified Galerkin method based on a Chebyshev poly-
nomial expansion of the eigenfunctions [10].

Fig. 2. Neutral stability curves for Ta = 10.0, Da = 10−5 and
S = 1.0. Dashed curves represent overstable convection and
the solid curve represents the stationary convection.

Fig. 3. Neutral stability curves for Ta = 100.0, Da = 10−5

and S = 1.0. Dashed curves represent overstable convection
and the solid curve represents stationary convection.

3.3 Results for Brinkman’s model

Figures 2 and 3 represent the neutral stability curves ex-
pressing Ra in terms of the wave number a for Ta = 10.0
and Ta = 100.0. These results are qualitatively similar to
the stability curves obtained by Vadasz [6] with an ex-
tended Darcy model. The neutral curves may exhibit one
or two minima that is either overstable or stationary. In
the particular case where both stationary and overstable
convection occur for the same value of the critical Rayleigh
number, one gets a codimension-2 point. It appears clearly
that regions where overstable convection occurs depend on
the values of Ta and χ.

Our Brinkman’s model allows for analyzing the influ-
ence of Da on the neutral stability curves. Figures 4 and 5
represent this influence for two different values of Ta. For
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Fig. 4. Influence of the Darcy number for Ta = 5.0, χ = 1.0
and S = 1.0. Dashed curves represent overstable convection
and the solid curve represents stationary convection.

Fig. 5. Influence of the Darcy number for Ta = 100.0, χ =
120.0 and S = 1.0. Dashed curves represent overstable convec-
tion and the solid curve represents the stationary convection.

very low values of Da, the critical value is stationary or
overstable and one recovers (see Fig. 6) the analytical re-
sults obtained by Vadasz [6] with Darcy model, namely

Raover
c =

2
a2

[(
π2 + a2

) (
π2 + a2 + χ

)
+

χ2 Ta π2

π2 + a2 + χ

]
,

(28)

Rastat
c =

(
π2 + a2

)2

a2
+ Ta

(
π2 + a2

)
a2

π2, (29)

where Raover
c and Rastat

c denote the overstable and sta-
tionary porous Rayleigh numbers respectively. When Da
is increased, one observes that the critical convection is al-
ways stationary, as could have been expected because the

Fig. 6. Stability curves for Brinkman model and analytical
results from Darcy model (Ta = 5.0, χ = 1.0 and S = 1.0).

Fig. 7. Influence of the modified Biot number for Ta = 5.0,
Da = 10−5, S = 1.0 and χ = 1.0. Dashed curves represent
overstable convection and the solid curve represents stationary
convection.

very permeable porous medium behaves approximately
like a fluid and Chandrasekhar [7] showed that overstable
convection is restricted to very low values of the Prandtl
number.

Finally, the effect of the modified Biot number on the
stability curves is shown in Figure 7. It is clear that, by
decreasing Bi from Bi = 1 (purely conductive state) to
Bi = 0 (perfectly adiabatically isolated boundary), one
needs less energy input for temperature perturbations to
develop, with, as consequence, a lower value of the crit-
ical temperature gradient. The difference is about 50%
between the adiabatic case (Bi = 0) and the purely con-
ductive case (Bi = 1).
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4 Weakly nonlinear stability analysis

4.1 Nonlinear equations and amplitude equations

The nonlinear evolutions of the vertical velocity, the ver-
tical vorticity and the temperature are governed by the
following dimensionless equations:

χ−1
(
∂t∇2w + φ−1

[∇2
hN(w)− ∂2

xzN(u)− ∂2
yzN(v)

])
=

Ra∇2
hT + Λ Da ∇4w −∇2w −

√
Ta ∂zζ, (30)

χ−1∂tζ + χ−1φ−1 [∂xN(v)− ∂yN(u)] =

Λ Da ∇2ζ − ζ +
√

Ta ∂zw, (31)

S−1∂tT + N(T ) = ∇2T + w, (32)

wherein N(∗) = u ·∇∗.
The starting point of our nonlinear approach is the

amplitude method which is described in details in [11,12].
This technique is based on the development of the solution
in eigenmode series of the linear problem (wP , ζP , TP ):




w

ζ

T


 =

∑
P

AP (t)




wP

ζP

TP


 + c.c., (33)

index P is written for a, q and the AP (t) are the com-
plex time-dependent amplitudes, c.c. stands for “complex
conjugate”. When development (33) is introduced in the
nonlinear balance equations (30–32), the following ampli-
tude equations are obtained for the amplitudes of the basic
modes:

dAP

dt
= sP AP + ε

∑
Q

MPQAQ +
∑
Q, L

NPQLAQAL

+
∑

Q, L, R

TPQLRAQALAR. (34)

Definition of the basic modes and further details on the
nonlinear technique are found in the appendix.

4.2 Küppers-Lortz instability

The presence of rotation in our system breaks the reflec-
tion symmetry, thereby allowing new instabilities to occur.
We will focus on the so-called Küppers-Lortz instability
discovered in 1969 in pure liquids [13]. This effect refers
to the instability of a roll pattern with respect to a sim-
ilar pattern but rotated through an angle α with respect
to the original one. As the new pattern is also unstable
to the same instability, the instability leads to a time-
dependent behavior and Küppers and Lortz showed that
for sufficiently high rotation rates, this instability sets in
immediately at the convection threshold. Numerous theo-
retical and numerical studies on Küppers-Lortz instability
in pure fluids have been done [14–18] and a good review
is found in [19]; however, there exists no equivalent work

Fig. 8. Wave vectors a1 and a2 in the plane (ax, ay).

for porous media and this lack is one of the motivations
of the present section.

Since we are interested in the stability of a pattern of
parallel rolls with respect to oblique roll-like disturbances,
we formulate the nonlinear problem on a rhombic lattice
whose angle α is to be specified. The lattice is thus de-
fined by two wave vectors a1 and a2 (and their negatives)
of magnitude ac, satisfying a1 · a2 = a2

c cosα (see Fig. 8)
where a dot means a scalar product. We apply the tech-
nique described in the previous section to finally obtain
the following two amplitude equations

τ
dA1

dt
= εA1 −

(
Ψ |A1|2 + Ξα|A2|2

)
A1, (35)

τ
dA2

dt
= εA2 −

(
Ψ |A2|2 + Ξα|A1|2

)
A2, (36)

the quantities A1 and A2 denote the amplitudes of the
modes a1 and a2, while the coefficients τ , Ψ , Ξα and Ξα

are real. It is important to note that the presence of ro-
tation breaks the symmetry A1 ←→ A2 characteristic of
nonrotating systems and consequently, Ξα and Ξα are not
necessarily equals allowing Küppers-Lortz instability to
occur. It is easy to check that rolls in the a1 direction
lose their stability with respect to rolls in the a2 direc-
tion when Ψ − Ξα passes through a zero and the onset
of Küppers-Lortz instability is then located by using the
following criterion [14]

min
α∈[0,Π]

[Ψ (χ, Ta)−Ξα (χ, Ta)] = 0 (37)

Equation (37) defines a critical Taylor number Tac and
the corresponding angle αc as a function of the filtration
Prandtl number. In Section 3, it was stated that, in porous
media, overstable convection is not restricted to particu-
lar values of the Prandtl number so that it is justified
to consider the limiting case of an infinite Prandtl num-
ber, to be sure that the threshold will be stationary. Ta-
ble 1 gives αc and Tac as a function of Da. It is worth
noticing that the results are not very sensitive for small
values of Da with a critical angle around 59◦ and a crit-
ical Taylor number around 2. When Da becomes much
larger than one, the results coincide with the correspond-
ing critical values for simple fluids, namely αc = 59◦.7 and
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Table 1. Onset of Küppers-Lortz instability as a function of
Da for χ = ∞.

Da αc Tac

10−8 58◦.6 1.9

10−3 58◦.8 2.0

102 59◦.7 3 × 107

Fig. 9. Ψ − Ξα as a function of α for Ta = 1.8 and Ta = 2.0.

Tafluid
c = Tac Da−2 = 3003 [14]. In Figure 9 we repre-

sent Ψ −Ξα as a function of α for Taylor numbers slightly
below and above the critical value. We will not reproduce
the nonlinear coefficients as they depend on the normal-
ization used in the amplitude equations but it is worth
noting that Ψ is always positive. This confirms the result
of Vadasz [2] that a pitchfork bifurcation occurs at the
threshold of the stationary convection.

5 Conclusions

In the first part of this paper, a linear stability analysis
is performed to study the onset of both stationary and
overstable thermal convection in a rotating porous layer
heated from below. The effect of rotation is restricted to
the Coriolis term, neglecting thus the centrifugal force and
heat transfer is described by Newton’s cooling law. With
respect to previous works, we have examined the effects
resulting from the substitution of Darcy’s by Brinkman’s
law.

The main results can be summarized as follows. First,
it is observed that Brinkman’s model gives qualitatively
the same results as Darcy’s one. Second, as already
pointed out by Vadasz [2], overstable convection is not
confined to particular values of the Prandtl number.
Third, the overstable minimum in the neutral curves tends
to disappear for large Darcy numbers.

In the second part of the work, special emphasis has
been put on the onset of Küppers-Lortz instability for an
infinite Prandtl number by means of a weakly nonlinear

approach. We have derived the Ginzburg-Landau equa-
tions in a general way and considered the particular situa-
tion of two sets of rolls rotated by an angle α. The critical
angle αc and the corresponding Taylor number are cal-
culated. They are shown to behave nearly independently
for small Da’s and the single fluid case is recovered for
large Da’s.

In a work now in progress, we will study in more details
the spatio-temporal patterns resulting from the Küppers-
Lortz instability and compare our nonlinear results with
direct numerical simulations based on the full 3D nonlin-
ear equations.

This work was supported by ESA through the CIMEX-MAP
and PRODEX contracts and by the European Union through
ICOPAC project HRPN-CT-2000-00136. The authors thank
Prof. E. Arquis and Prof. J.P. Caltagirone (MASTER Labora-
tory, ENSCPB, Bordeaux) as well as Prof. W. Pesch (Univer-
sity of Bayreuth) for stimulating discussions.

Appendix

In this appendix we present in detail the nonlinear method
used in this paper and the way to obtain the amplitude
equations (34). After introducing expansions (33) in equa-
tions (30–32), one projects them on the adjoint eigen-
functions of the linear problem. This amounts to multiply
equation (30) by w�

P , the vertical velocity field of the ad-
joint eigenvalue problem, equation (31) by ζ�

P , the vertical
vorticity field of the adjoint eigenvalue problem and finally
the energy equation by T �

P , with T �
P the temperature field

of the adjoint eigenvalue problem. These three relations
are added and integrated over the system volume. Making
use of the bi-orthogonality relations between the solutions
of the eigenvalue problem and its adjoint, together with
the boundary conditions, we obtain the time evolution
equations for the amplitudes in the following form:

dAP

dt
= sP AP + ε

∑
Q

MPQAQ +
∑
Q, L

NPQLAQAL. (38)

In equation (38), the quantity ε stands for (Ra−Rac)/Rac,
i.e. the relative distance to the threshold and the matri-
ces MPQ and NPQL are given by:

MPQ = Rac
〈w�

P∇2
hθQ〉

〈S−1θ�
P θP + χ−1 (w�

P ∇2wP + ζ�
P ζP )〉 , (39)

NPQL = −Υ−1
(〈χ−1φ−1

[
w�

P

(∇2
hNQ(wL)− ∂2

xzNQ(uL)

−∂2
yzNQ(vL)

)
+ζ�

P

(
∂xNQ(vL)− ∂yNQ(uL)

)]

+θ�
P NQ(TL)〉) (40)

where square brackets denote integration over the fluid
volume and Ni(xj) is a simplified notation for ui · ∇xj

(i, j = Q, L) while Υ is given by

Υ = 〈S−1θ�
P θP + χ−1

(
w�

P ∇2wP + ζ�
P ζP

)〉. (41)
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Referring to a slaving principle [20,21], we are able to
reduce the infinite dimensional set of equations (38) to
a finite number of ordinary differential equations for the
amplitudes of the most unstable modes of convection. The
procedure leading to this reduced system can be briefly
summarized as follows. First, the infinite number of eigen-
modes is split into two categories. The “basic” modes are
the most unstable modes, with real part of the growth
rates close to zero while the “slaved” or “stable” modes are
quickly damped, due to strong negative values for Re(sP ).
These slaved modes are present in the solution only as
the quadratic response to the nonlinear growth of the ba-
sic modes above the threshold and their own dynamics
can be neglected. For this reason, the corresponding time
derivatives are set equal to zero in the evolution equa-
tions (38). This results in an algebraic relation between
the basic and slaved amplitudes. When the amplitudes of
the slaved modes are small with respect to the basic ones,
the quadratic terms of these algebraic equations contain-
ing only damped modes can be neglected and the following
expression of the slaved amplitudes in terms of the basic
ones can easily be deduced

APs = − 1
sPs

∑
Q, L

NPsQLAQAL, (42)

where the sub-index s refers to a slaved mode. In the r.h.s.
of (42), the indices Q and L denote the basic modes only.
Note that relation (42), based on the smallness of APs ,
is always correct close to the threshold where the ampli-
tudes of the basic modes can be assumed to remain suffi-
ciently small. Expressions (42) for the amplitudes of the
slaved modes are then introduced in the evolution equa-
tions (38) for the basic modes. If terms of order higher
than 3 are neglected, one obtains the following final “am-
plitude equations” for the amplitudes of the basic modes:

dAP

dt
= sP AP + ε

∑
Q

MPQAQ +
∑
Q, L

NPQLAQAL

+
∑

Q, L, R

TPQLRAQALAR. (43)

In this relation, all amplitudes and indices correspond to
basic modes only and the definition of the matrix TPQRL is
easily deduced from the context.
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